首页> 今日优选> 二年级数学知识点总结实用【15篇】

二年级数学知识点总结实用【15篇】

时间:2025-10-11 09:10:02

二年级数学知识点总结实用【15篇】

总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不妨让我们认真地完成总结吧。那么总结应该包括什么内容呢?下面是小编整理的二年级数学知识点总结,欢迎阅读与收藏。

二年级数学知识点总结实用【15篇】

二年级数学知识点总结1

第十一章三角形

一、知识框架:

二、知识概念:

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2.三边关系:三角形任意两边的和(大于或小于)第三边,任意两边的差(大于或小于)第三边.

3.高:从三角形的一个顶点向它的对边所在直线作,顶点和间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边的线段叫做三角形的中线.

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和之间的线段叫做三角形的角平分线.

6.三角形的稳定性:三角形的形状是,三角形的这个性质叫三角形的稳定性.

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

8.多边形的内角:多边形两边组成的角叫做它的内角.

9.多边形的外角:多边形的一边与它的邻边的线组成的角叫做多边形的外角.

10.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13.公式与性质:

⑴三角形的内角和:三角形的内角和为度。

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的的和.

性质2:三角形的一个外角大于任何一个和它的内角.

⑶多边形内角和公式:n边形的内角和等于。

学无虑课后辅导中心编制

⑷多边形的外角和:多边形的外角和为度.

⑸多边形对角线的条数:

①从n边形的一个顶点出发可以引条对角线,把多边形分成个三角形.

②n边形共有条对角线.

第十二章全等三角形

一、知识框架:

二、知识概念:

1.基本定义:

⑴全等形:能够完全的两个图形叫做全等形.

⑵全等三角形:能够完全的两个三角形叫做全等三角形.

⑶对应顶点:全等三角形中互相的顶点叫做对应顶点.

⑷对应边:全等三角形中互相的边叫做对应边.

⑸对应角:全等三角形中互相的角叫做对应角.

2.基本性质:

⑴三角形的稳定性:三角形三边的确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

⑵全等三角形的性质:全等三角形的相等,对应角相等.

3.全等三角形的判定定理:

⑴边边边(SSS):。

⑵边角边(SAS):。

⑶角边角(ASA):。

⑷角角边(AAS):。

⑸斜边、直角边(HL):。

4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的上.

5.证明的基本方法:

⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.

第十三章轴对称

一、知识框架:

二、知识概念:

1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且这条线段的直线,叫做这条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

⑸等边三角形:都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段的距离相等.②与一条线段两个端点距离相等的点在这条线段的上.⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P"(,).②点P(x,y)关于y轴对称的点的坐标为P"(,).⑷等腰三角形的性质:

①等腰三角形两腰.

②等腰三角形两底角相等(等边对等角).

③等腰三角形的、,相互重合.④等腰三角形是图形,对称轴是三线合一(1条).⑸等边三角形的'性质:

①等边三角形三边都相等.

②等边三角形三个内角都相等,都等于度。③等边三角形每条边上都存在三线合一.

④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:

⑴等腰三角形的判定:

①相等的三角形是等腰三角形.

②如果一个三角形有两个角相等,那么这两个角所对的边也(等角对等边).

⑵等边三角形的判定:

①都相等的三角形是等边三角形.②三个角都相等的三角形是三角形.

③有一个角是度。的等腰三角形是等边三角形.

4.基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

第十四章整式的乘除与分解因式

一、知识框架:

整式乘法乘法法则整式除法因式分解

二、知识概念:

基本运算:⑴同底数幂的乘法公式:。⑵幂的乘方公式:。⑶积的乘方公式:。

2.整式的乘法:⑴单项式单项式:系数,同字母,不同字母为积的因式.⑵单项式多项式:。⑶多项式多项式:.

3.计算公式:

⑴平方差公式:ababab

222222⑵完全平方公式:aba2abb;aba2abb

224.整式的除法:

⑴同底数幂的除法:aaamnmn

⑵单项式单项式:系数,同字母,不同字母作为商的因式.⑶多项式单项式:.⑷多项式多项式:用竖式.

5.因式分解:把一个多项式化成的积的形式,这种变形叫做把这个式子因式分解.

6.因式分解方法:

⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆项法⑸添项法第十五章分式一、知识框架:

二、知识概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意义的条件:分母不等于.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为的整式,分式的值不变.4.约分:把一个分式的分子和分母的(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成的分式,这一过程叫做通分.

6.最简分式:一个分式的分子和分母没有时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:

⑴同分母分式加减法则:同分母的分式相加减,分母,把相加减.用字

母表示

为:。

⑵异分母分式加减法则:异分母的分式相加减,先,化为同分母的分

式,然后再按同分母分式的加减法法则进行计算.用字母表示为:。

⑶分式的乘法法则:两个分式相乘,把相乘的积作为积的分子,把相乘的积作为积的分母.用字母表示为:。

⑷分式的除法法则:两个分式相除,把除式的和颠倒位置后再与被除式相乘.用字母表示为:。⑸分式的乘方法则:、分别乘方.用字母表示为:。8.整数指数幂:⑴aaam⑵amnmn(m、n是正整数)namn(m、n是正整数)nn⑶abab(n是正整数)n⑷aaanmnmn(a0,m、n是正整数,mn)ana⑸n(n是正整数)bb⑹an1(a0,n是正整数)na9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:

①(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;

③(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

二年级数学知识点总结2

第一章————除法

1、用乘法口诀做除法,余数一定要比除数小;

2、应用题中,除数和余数的单位不一样;

商的单位是问题的单位,余数的单位和被除数的单位相同;

3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

第二章————方向与位置(认识方向)

1、地图上的方向口诀:上北下南,左西右东;

辨认方向时要画方向标。

2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

“小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

3、太阳早上从东边升起,西边落下;

指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

4、当吹东南风时,红旗往()飘;

吹西北风时,红旗往()飘。

第三章————生活中的大数(认识10000以内的数)

1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

末尾不管有几个“0”,都不读;

写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

980-()=760(用980-760计算)

6、加法的`验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

第六章————认识角1、每个角都是由1个顶点和2条边组成;

2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

4、正方形有四个直角,四条边都相等;

长方形有四条边,四个直角,长方形的对边相等;

5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

4、时针走一大格是1小时,走一圈是12小时;

5、时、分、秒相邻单位的进率是60;

1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

第八章————统计1、记录并学会计算,谁多,谁少。

二年级数学知识点总结3

竖式除法

1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

2、进一步体会除法的意义。

有余数的除法

1、体会有余数除法的意义。

2、积累正确的试商方法。

4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

5、能运用有余数除法的知识解决一些简单的实际问题。

分苹果(竖式除法)

知识点:

1、掌握表内除法竖式的书写格式。

2、掌握除法竖式的写法和每一步所表示的含义。

分橘子(有余数的除法(一))

知识点:

1、体会有余数除法的意义。

2、会用竖式表示有余数的除法,了解余数一定要比除数小。

分草莓(有余数的除法(二))

知识点:

1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

2、能运用有余数除法的知识解决一些简单的实际问题。

租船(有余数除法的应用(一))

知识点:

灵活运用有余数的除法的有关知识解决生活中的简单实际问题。

派车(有余数除法的应用(二))

知识点:

灵活运用有余数除法及相关知识解决生活中的简单实际问题。

认识分米、毫米、千米

1、分米用字母dm表示,1分米写成1dm

2、毫米用字母mm表示,1毫米写成1mm

3、千米用字母km表示,1千米写成1km

米、分米、厘米、毫米、千米之间的换算

1、1厘米=10毫米或1cm=10mm

2、1分米=10厘米或1dm=10cm

3、1米=100厘米或1m=100cm

4、1米=10分米或1m=10dm

5、1千米=1000米或1km=1000m

感受1分米、1毫米、1千米间的实际长度

1、一张IC卡的厚度大约是1毫米

2、1扎的长度大约是1分米

3、公共汽车两站地间的距离大约是1千米

4、根据具体情境选择合适的长度单位

铅笔有多长(分米、毫米的认识)

知识点:

通过实际测量,了解米、分米、厘米、毫米之间的关系。

1分米=10厘米或1dm=10cm;

1米=10分米或1m=10dm;

1厘米=10毫米或1cm=10mm;

2、知道1分米或1毫米的实际长度。

3、能利用长度单位之间关系进行单位换算

1千米有多长(千米的认识)

知识点:

1、体验1千米有多长。

2、了解千米和米之间的关系;1千米=1000米或1km=1000m。

3、能正确使用长度单位。

认识角(角的初步认识)

知识点:

1、角是由一个顶点和两条直直的边组成的;

2、角的各部分名称、记法和读法;

3、能用角的符号(“∠”)表示角;

4、会比较角的大小。了解角的大小与两边张口的大小有关,与边的长短无关;

5、能辨认直角、锐角和钝角。

长方形与正方形

知识点:

1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

2、初步了解长方形、正方形之间的联系:正方形是特殊的`长方形。

3、能在方格纸上画出长方形与正方形。

平行四边形

知识点:

1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

2、初步了解长方形是特殊的平行四边形。

欣赏与设计

知识点:

1、进一步掌握已学过的图形,感受图形之美。

2、能用学过的图形在方格纸上设计图案,涂色时有一定规律性。

认识新的数计数单位

1、认识计数单位“千”“万”

2、万以内计数单位间的关系

3、万以内数位顺序表

万以内数的。读写

1、会读万以内的数

2、会写万以内的数

3、感受“满十进一”的十进制计数法

万以内数比较大小

1、会比较万以内数的大小

2、会用符号表示万以内数的大小

3、结合实际进行万以内数的估计。

数一数(认识新的计数单位)

知识点:

1、认识计数单位“千”“万”。

2、了解万以内计数单位间的关系:10个一是十;10个十是一百;10个一百是一千;10个一千是一万。

3、掌握万以内数的数位顺序。从右起第一位开始依次为个位,十位,百位,千位,万位。

4、结合具体情景,对“一千”和“一万”有具体的感受。

5、初步感受“满十进一”的十进制计数法。

拨一拨(万以内数的读写)

知识点:

1、会数数:一个一个地数;十个十个地数;一百一百地数等。

2、会读万以内的数:从高位起,依次读出每个数位上的数,末尾有零都不读,中间有一个或两个零只读一个零。

3、会写万以内的数:从高位起,依次写出每个数位上的数,哪位上一个单位也没有,就在那位上写零。

4、初步感受“满十进一”的十进制计数法。

比一比(万以内数比较大小)

知识点:

1、会比较万以内数的大小。方法:先比较数位的多少,数位多的数比较大,如果数位相同,先比最高位,最高位上的数相同,就比较下一位……

2、能够用符号表示万以内数的大小。

3、能结合实际进行万以内数的估计。

统计表

1、读懂信息

2、分析信息、预测信息

条形统计图

1、读懂

纵向:用直条的高矮表示(横向表示类别竖向表示数量)

横向:用直条的长短表示(竖向表示类别横向表示数量)

2、亲自经历收集数据

3、绘制条形统计图并做出分析

读统计图表(条形统计图)

知识点:

1、能读懂统计图表,从统计图表中获得信息。

2、认识条形统计图,体会条形统计图能直观地表示数量的多少。

3、能根据统计图表进行简单的分析。

讨论(统计图表)

知识点:

1、对统计图表中的数据作初步的分析和预测。

2、通过“泡豆芽”小实验记录的数据,能在方格纸上绘制统计图并作出分析。

辨认方向

1、给定一个方向,辨认其余的七个方向

2、用八个方向的词语描述物体所在的位置

认识路线

1、会使用八个方向认识简单的路线图。

2、路线图说出从出发地到目的地行走方向、距离和经过的地方。

辨认方向

知识点:

1、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。

2、能根据给定的一个方向,辨认地图中的其他七个方向。

认识路线

知识点:

1、学会使用八个方向认识简单的路线图。

2、能根据路线图说出从出发地到目的地行走的方向、距离和经过的地方。

二年级数学知识点总结4

1、乘法的含义

乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

2、乘法算式的写法和读法

⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

4 × 3 = 12或3 × 4 = 12

⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

3、乘法算式中各部分的名称及实际表示的意义

在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。

4、乘法算式所表示的意义

求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

5、加法写成乘法时,加法的`和与乘法的积相同。

6、乘法算式中,两个乘数交换位置,积不变。

7、算式各部分名称及计算公式。

乘法:乘数×乘数=积

加法:加数+加数=和

和—加数=加数

减法:被减数—减数=差

被减数=差+减数

减数=被减数—差

8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

如:1×9=10—1 9×5=50—5

9、看图,写乘加、乘减算式时:

乘加:先把相同的部分用乘法表示,再加上不相同的部分。

乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

计算时,先算乘,再算加减。

如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

10、“几和几相加”与“几个几相加”有区别

求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

求几个几相加,用几乘几。

如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

都可以用口诀(三五十五)来计算,表示(3)个(5)相加

3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

第五单元观察物体

1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

2、观察物体时,要抓住物体的特征来判断。

3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

第七单元认识时间

1、认识时间

(1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

(2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

(3)时针走1大格分针要走一圈,所以1时=60分;

(4)半小时=30分,一刻钟=15分钟

(5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

2、运用知识解决问题

(1)要按着时间的先后顺序安排事件,时间上不能重复。

(2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

(3)时针和分针能形成直角的时刻是3时和9时。

第八单元数学广角-搭配

1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

2、借用连线或者符号解答问题比较简单。

3、排列与顺序有关,组合与顺序无关。

二年级数学知识点总结5

本单元与第二单元考察内容大同小异。

第五单元混合运算

一、混合计算

混合运算,先乘除,后加减,有括号的要先算括号里面的。

只有加、减法或只有乘、除法,都要从左到右按顺序计算。

二、解决两步计算的实际问题

1、想好先解决什么问题,再解决什么问题。

2、可以画图帮助分析。

3、可以分步计算,也可以列综合算式。

4、带小括号运算的类型:

方法:算式里有括号的,要先算括号里面的。

5.把两个算式合并成一个综合算式。(重点)。

弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。

当需要替换的是第二个数,必要时还需要加上小括号。

第六单元有余数的除法

有余数的除法

1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

最大的余数小于除数1,最小的余数是1。

3、笔算除法的计算方法:

(1)先写除号“厂”

(2)被除数写在除号里,除数写在除号的左侧。

(3)试商,商写在被除数上面,并要对着被除数的个位。

(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

(2)乘:把除数和商相乘,将得数写在被除数下面。

(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

(4)比:将余数与除数比一比,余数必须必除数小。

5、解决问题

根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

(1)余数比除数小。

(2)至少问题(进一法):商+1

22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

22÷4=5(条)……2(人)

答:他们至少要租6条船。

(3)最多问题(去尾法)

茵苗有10元,每个面包3元,茵苗最多能买几个?

本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。

第七单元万以内数的认识

一、1000以内数的认识

1、10个一百就是一千。

2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。

3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

5、认识算盘,一颗上珠是5,一颗下珠是1。

二、10000以内数的认识

1、10个一千是一万。

2、万以内数的读法和写法与1000以内的数读法和写法相同。

3、最小两位数是10,最大的两位数是99;

最小三位数是100,最大的三位数是999;

最小四位数是1000,最大的四位数是9999;

最小的五位数是10000,最大的五位数是99999。

三、整百、整千数加减法

1、整百、整千加减法的计算方法。

(1)把整百、整千数看成几个百,几个千,然后相加减。

(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

2、估算

把数看做它的近似数再计算。

四、10000以内数的大小比较的方法:

(1)位数多的数就大,例如999<1000

(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;

(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。

第八单元克、千克

1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

4、1千克=1000克1kg=1000g.进率是1000。

5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。

估计物品有多重,要结合物品的大小、质地等因素。

物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。

第九单元数学广角-推理

1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。

推理时,先根据条件确定必然情况,再用排除法确定其他情况。

2、填数游戏和扫雷游戏

当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。

此外,还可以做一些加减混合、乘加、乘减的应用题。

小学二年级下册数学必背内容

(一)有余数的除法

①商要对着被除数的个位。②余数要比除数小。

被除数÷除数=商…….余数

被除数=除数×商+余数

1、()÷()=5……6,除数最小是(),被除数最小是()。

2、在应用题中,余数单位和被除数单位相同。

(二)万以内数的.认识

1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。

2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.

4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.

5、读数、写数都从高位起。

(三)长度单位

1、1千米=(1000)米

1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,

1米=(100)厘米,1分米=(100)毫米。

2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;

(2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。

4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。

5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。

(四)三位数的加法和减法

1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。

2、加数=和-另一个加数

被减数—减数=差

被减数=减数+差

减数=被减数-差

3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。

(五)图形

1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的边叫宽(2条宽)。

2、正方形:(四条边)都相等,4个角都是(直角)。

3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。

(六)时间单位

1、钟面上有(12)个大格,(60)个小格。

时针走(1大格)是(1时);

分针走(1小格)是(1分),走一大格是(5分)。

秒针走(1小格)是1秒,走一大格是(5秒)。

2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。

3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。

4、结束时间-开始时间=经过时间

结束时间-经过时间=开始时间

开始时间+经过时间=结束时间

5、在求时间时,可以列竖式计算。

减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。

7时10分-3是50分=()2时40分+3时50分=()

6、通常下午的时间转化成24时计时法,例如

下午3时20分就是(15时20分)

7、描述50米、100米跑步的时间要用(秒)作单位。

8、时针从数字3走到数字8经过时间是()。

分针从数字3走到数字8经过时间是()。

秒针从数字3走到数字8经过时间是()。

二年级数学知识点总结6

一、学习目标:

1.初步经历长度单位形成的过程,体会统一长度单位的必要性,知道长度单位的作用;

2.在具体情境下,进一步体会加法的意义,理解相同数位上的数才能相加的道理;

3.探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;

4.初步认识角,知道角的各部分名称,初步学会用尺画角;

5.能够正确理解乘法的含义;认识乘号、因数、会读写乘法算式;

6.理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀。

二、学习难点:

1.学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;

2.理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

3.理解相同数位上的数才能相加的道理,即笔算中的`“对位”问题;

4.学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;

5.初步理解乘法的含义,知道求几个相同加数的和时,用乘法表示比较简便,认识乘号、会读,写乘法算式;

6.使学生理解7的乘法口诀的来源和意义;初步掌握7的乘法口诀,能运用7的口诀正确进行计算。

三、知识点概括总结:

1.长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

米:国际单位制中长度的标准单位是“米”,用符号“m”表示。

分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

厘米:长度单位,简写符号为:cm。

毫米:英文缩写为mm

(1厘米=10毫米=0.1分米=0.01米=0.00001千米)

2.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

3.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

4.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

1不能够减去2,所以必须向高位的5借位。

5.连加:多个数字连续相加叫做连加。例如:28+24+23=85

6.连减:多个数字连续相减叫做连减。例如:85-40-26=19

7.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

二年级数学知识点总结7

一、100以内的笔算加法和减法

1.用竖式计算两位数加法时:

①相同数位对齐。

②从个位加起。

③如果个位满10,向十位进1。

2.用竖式计算两位数减法时:

①相同数位对齐。

②从个位减起。

③如果个位不够减,从十位退1,个位加10再减,计算时十位要记得减去退掉的1。

3.划线一定要用尺子,抄错数是一个严重的问题。

4.求“一个已知数”比“另一个已知数”多多少.少多少?

要弄清楚数量之间的关系,知道谁比谁多,谁比谁少,再分析用加法还是减法。

5.连加连减和加减混合时注意加减号,不要混乱。

二、平行四边形的初步认识

1.长方形、正方形和平行四边形都是(四)边形。

2.搭一个五边形,最少要用(五)根小棒。

3.从正方形的纸上剪去一个三角形,剩下的图形可能是三角形,可能是(四)边形,也可能是(五)边形。

4.一个图形是几边形它就有几条边。

三.表内乘法(一)

1.几个相同数连加除了用加法表示外,还可以用乘法表示。用乘法表示更加简捷。

2.相同加数相加写成乘法时,用相同加数×相同加数的个数或相同加数的个数×相同加数。如:5+5+5+5 表示:5×4或4×5

3.加法写成乘法时,加法的和与乘法的积相同。

4.乘法算式中,两个乘数交换位置,积不变。

5.算式各部分名称及计算公式。乘法:

3 × 4 = 12

(乘数) × (乘数) = (积)

6.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

7.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

计算时,先算乘,再算加减。

如:

加法:3+3+3+3+2=14

乘加:3×4+2=14

乘减:3×5-1=14

8.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

9.乘法口诀关系到下册的除法的计算,务必背熟。

10.乘法、乘加、乘减、加减的应用,要求学生首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

四、表内除法

1.初步理解除法的含义,初步体会除法和乘法的联系,能正确读、写除法算式,知道出发算式中各部分的名称,比较熟练地运用2~9的乘法口诀口算有关的除法。

2.平均分:每份分得同样多,叫作平均分。

平均分的两种分法:

分法1:平均分成几份,每份分得几个;

分法2:按每几个一份的分,平均分成几份。

如:有10个苹果,分法1:平均分成5份,每份分得2个;分法2:按每2个一份的分,平均分成5份。

五、米和厘米

1.常用的长度单位:米、厘米。

2.要知道物体的长度,可以用(尺)来量。

2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3.测量时:把尺的“0”刻度对准物体的左端,再看纸条的.右端对着几,对着几就是几厘米。

4. 1米=100厘米 ,100厘米=1米。

在计算长度单位时,先看单位是否相同,不同则要先把单位化成一样的单位再加减。如:

1米-40厘米=60厘米(100厘米 -40厘米=60厘米)

5.线段的特点:

①线段是直的。

②线段有两个端点。

③线段是可以测量出长度的。

6.画线段要从尺的(0)刻度开始画起,画到题目要求的数字那里。

比如:要求画一条5厘米长的线段。就从0开始,画到5结束。

例题:

(1)从刻度0到7是( 7 )厘米。

就直接用7-0=7厘米。括号就填7厘米。

(2)2到8是(6 )厘米。

就直接用8-2=6厘米。括号就填6厘米。

7.画一条比6厘米短3厘米的线段。

就是求比6厘米短3厘米是多少?

6-3=3厘米。所以题目要求就是画一条3厘米长的线段。

8.例题:

任意画一个由三条线段围成的图形。就是要求画一个三角形。

六、表内乘法和表内除法(二)

1.加法写成乘法时,加法的和与乘法的积相同。

2.乘法算式中,两个乘数交换位置,积不变。

3.算式各部分名称及计算公式。

乘法:

3 × 4 = 12

(乘数) × (乘数) = (积)

4.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

5.乘加:先把相同的部分用乘法表示,再加上不相同的部分。

乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

计算时,先算乘,再算加减。

6.熟练地背诵1-6的乘法口诀,顺着背、倒着背、竖背等多种方法。

7.乘法口诀关系到下册的除法的计算,务必背熟。

8.乘法、乘加、乘减、加减的应用,要求首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。

9.用表内乘法求商。

七、观察物

1.从前.后.左.右不同的位置观察到的物体形状不一样。

2.根据立体图形判断平面图形,根据平面图形判断立体图形。

二年级数学知识点总结8

1、常用的长度单位:米、厘米。

2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几, 这个物体的长度就是几厘米。

4、米和厘米的关系:1米=100厘米 100厘米=1米

5、线段

⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的`上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来。

⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

6、填上合适的长度单位。

小明身高1(米)30(厘米) 练习本宽13(厘米) 铅笔长17(厘米)

黑板长2(米) 图钉长1(厘米) 一张床长2(米)

一口井深3(米) 学校进行100(米)赛跑 教学楼高25(米)

宝宝身高80(厘米) 跳绳长2(米) 一棵树高3(米)

一把钥匙长5(厘米) 一个文具盒长24(厘米) 讲台高90(厘米)

门高2(米) 教室长12(米) 筷子长20(厘米)

二年级数学知识点总结9

一.100以内的笔算加法和减法

知识点:

1.用竖式计算两位数加法时:

①相同数位对齐。

②从个位加起。

③如果个位满10,向十位进1。(课本15页练习二第4题.16页第7题)

2.用竖式计算两位数减法时:

①相同数位对齐。

②从个位减起。

③如果个位不够减,从十位退1,个位加10再减,计算时十位要记得减去退掉的1。(课本20页练习三第4题,21页第7题)

3.划线一定要用尺子,抄错数是一个严重的问题。

4.求“一个已知数”比“另一个已知数”多多少.少多少?要弄清楚数量之间的关系,知道谁比谁多,谁比谁少,再分析用加法还是减法。(课本24页做一做。练习四第1.2.3题)

5. 连加连减和加减混合时注意加减号。不要混乱。(课本28页两个做一做。练习五第2题.第7题)

二.米和厘米、角和直角

知识点

1.常用的长度单位:米、厘米。

2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3.测量时:把尺的“0”刻度对准物体的左端,再看纸条的右端对着几,对着几就是几厘米。

4.1米=100厘米 ,100厘米=1米。

5.线段的特点:

①线段是直的。

②线段有两个端点。

③线段可以测量出长度,是有限的'。

6.角有一个顶点,两条边组成。

7.角的画法:从一个点起,用尺子向不同的方向画两条边,就画成一个角。

用三角板可以画出直角(课本40页图例)。画角时应写上角各部分的名称。(课本44页第7题以及给出顶点和一条边,把角补充完整。)

8.三角板上的3个角中,有1个是直角。正方形.长方形都有4个角,都是直角。

9.要知道一个角是不是直角,可以用三角板上的直角比一比。

10.角的大小与两条边的长短无关,只和两条边张开的宽度有关。

11.比直角小的角叫做锐角,比直角大的角叫做钝角。(课本41页做一做2.连一连)

12.直角的`标志,锐角.钝角的标志。

13.怎样在一张不规则的纸中得到一个直角。(课本40页)

三.表内乘法

知识点

1.几个相同数连加除了用加法表示外,还可以用乘法表示。用乘法表示更加简捷。

2.加法写成乘法时,加法的和与乘法的积相同。

3.乘法算式中,两个乘数交换位置,积不变。

4.算式各部分名称及计算公式。

乘法:乘数×乘数=积

5.几的乘法口诀就有几句,几的乘法口诀前一句和后一句就相差几。

6.乘加:先把相同的部分用乘法表示,再加上不相同的部分。 乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

计算时,先算乘,再算加减。

如:

加法:3+3+3+3+2=14

乘加:3×4+2=14

乘减:3×5-1=14

7.熟练地背诵1-9的乘法口诀,顺着背、倒着背、竖背等多种方法。

8.乘法口诀关系到下册的除法的计算,务必背熟。

9.乘法、乘加、乘减、加减的应用,要求学生首先读题,弄清楚题中条件和问题之间的关系,再确定用什么法计算。(课本67页第4题,区分用加法还是用乘法。)

四.观察物体

知识点

1.从前.后.左.右不同的位置观察到的物体形状不一样。(课本68页做一做。70页第一题、第二、三、四题)

2.根据立体图形判断平面图形,根据平面图形判断立体图形。(71页第5题)

五.认识时间

知识点

1.钟面上一共有12个大格,每个大格分成5个小格。钟面上一共有60个小格。

2.分针走一小格的时间是1分。走1大格是5分。时针走一大格的时间是1小时。时针走1小时,分针正好走60分,1小时=60分。(课本95页第7题)

3.短针是时针,长针是分针。

4.30分钟也可以说半小时。15分钟可以说一刻。

5.认识时间以及时间的书写,包括电子计时法和文字计时法。强调几时5分和几时55分两种计时方法的书写。会认过十分钟,过二十分钟的时间。(课本95页第十题,101页第3题)

6.会根据给出的信息推断需要求的时间。(课本94页第4.5题)

六.数学广角

知识点

1.在排列和组合中,要按一定的顺序进行,才不会选重或选漏。排列与位置有关,组合与位置无关。

2.明确不同的问题排列组合的个数或次数不一样,99页练习二十四所有题。

二年级数学学习方法

一、时间的掌握。这一学期,他们会接触到秒针,在二年级的基础上更进一步对时间精确的学习。非常短暂的时间用秒来表示。这时候孩子换算单位的时候就是重点了,很多孩子不注意看看单位,容易出错。

二、时间段的计算。时间单位的换算搞清楚之后,要注意时间段的计算,这也是常出的一种题型,同样很重要。这时候孩子掌握24小时计时法既可以轻松解决这一种问题了。

三、倍数问题。倍数问题是一个难点,很多学生找不到关系,就会不知所措,所以这时候用画图的方法来解决,这样就一清二楚了。所以,教会孩子画图很重要,理清各数之间的关系。

四、三位数的加减法。在两位数的加减法的基础上,孩子掌握三位数的加减法并不太难,只是再列竖式时要注意孩子的书写,数位要对齐,从个位加起,并且一定要打上进位和退位符号,很多孩子很容易忘记自己有进位和退位。

二年级数学知识点总结10

小学二年级数学知识点

1、表内除法的知识点:

(1)理解平均分的意义。会根据表内乘法,计算简单的除法。

(2)会用乘法口诀求商。

(3)根据乘除法的意义解决一些简单的乘除法应用题。

(4)被除数÷除数=商被除数÷商=除数除数×商=被除数

2、除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

3、除法的性质

一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

4、除法公式

(1)被除数÷除数=商

(2)被除数÷商=除数

(3)除数×商=被除数

5、被除数

除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

小学二年级数学《四边形的认识》知识点

长方形与正方形

知识点:

1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

2、初步了解长方形、正方形之间的'联系:正方形是特殊的长方形。

3、能在方格纸上画出长方形与正方形。

平行四边形

知识点:

1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

2、初步了解长方形是特殊的平行四边形。

小学二年级数学《有余数的除法》知识点

一、有余数的除法

1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

3、笔算除法的计算方法:

(1)先写除号“厂”

(2)被除数写在除号里,除数写在除号的左侧。

(3)试商,商写在被除数上面,并要对着被除数的个位。

(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

(2)乘:把除数和商相乘,将得数写在被除数下面。

(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

(4)比:将余数与除数比一比,余数必须必除数小。

二、解决问题

根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

二年级数学知识点总结11

第一单元:有余数的除法

1、有余数除法以的意义:在平均分一些物体时,有时有剩余,这样的除法是有余数的除法。

2、余数与除数的关系:在有余数的除法中,余数一定比除数小。

3、除法列竖式计算方法:

(1)先写“厂”表示除号。

(2)在除号里写被除数。

(3)除号外面左侧写除数。

(4)把商写在除号的外面,被除数上面,并和被除数个位对齐。

(5)把除数和商的积写在被除数的下面(注意:相同数位要对齐)。

(6)用被除数减去商和除数的乘积得结果写在横线下面,与个位对齐。

4、有余数除法的试商方法:先想想被除数里面最多有几个除数,再利用乘法口诀试商。

5、除法算式中各部分之间的关系:

被除数÷除数=商+余数

被除数=商×除数+余数

被除数=除数×商+余数

余数=被除数﹣商×除数

第二单元:时分秒

1、认识钟面:

(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。

(2)钟面上有12个大格,每个大格里有5个小格。钟面上共有60个小格。

(3)时针走1大格是1小时。时针走1大格分针走1圈,也就是60小格,1时=60分。

(4)分针走1小格是1分,走1大格是5分。

秒针走1小格是1秒,走1大格是5秒。

分针走1小格秒针走1圈,1分=60秒

2、认识整时方法:分针指着12,时针指着几就是几时。

时针、分针、秒针全部重合的时间是12时,时针和分针成一条直线的时间是6时,时针和分针成直角的时间是3时和9时。

3、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。

4、记录时间有两种方法:

(1)文字法:如:5时50分;

(2)用电子表法记录时刻时,几时就写几,再写“:”,后面写分时要占两位,分针不够整十的,十位要用0占位。如:8时零5分写作8:05

5、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。

6、计算两段时间之间的时间方法:用结束的'时间减去开始的时间。整时减整时,分钟减分钟,分钟不够减向整时借1时在分钟上加60分钟再减。整时借出的1时要记得减去。

7、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。

第三单元:认识方向

1、认识东、南、西、北四个方向

(1)早上起来,面向太阳,前面是东,后面是西,左面是北,右面是南。

(2)依据一个确定的方向找其他三个方向的方法:面南背北,左东右西;面北背南,左西右东;面东背西,左北右南;面西背东,左南右北。

2、地图上的方向:地图通常是按“上北下南,左西右东”绘制的。

3、绘制简单示意图的方法:先选好观察点,把选好的观察点画在平面图的中心位置,再确定好各物体相对于观察点的方向,在纸上按“上北下南,左西右东”绘制,用“↑”标出方向。

4、看简单路线图描述行走路线的方法:

(1)看路线图确定好自己所处的位置,以自己所处的位置为中心

(2)根据“上北下南,左西右东”的规则来确定目标和周围事物所处的方向

(3)根据目标的方向和路程确定所要行走的路线。(一般以“在”字后面物体的位置为中心,以“的”字前面物体的位置为中心)

5、认识东南、东北、西南、西北四个方向:从“东”出发,东和北之间的方向就叫东北,东和南之间的方向就叫东南;从“西”出发,西和北之间的方向就叫西北,西和南之间的方向就叫西南。

6、指南针:

红色指针指针北面,白色指针指着南面。

树的年轮:较疏的向着南面,较密的向着北面。

树叶:较疏的向着北面,较密的向着南面

晴朗的夜间:朝着北极星的方向是北面。

影子的方向:和太阳所在的方向相反。

二年级数学知识点总结12

乘除法的意义意义:

乘法:知道“求相同加数的和”可以用乘法计算;

熟知乘法的含义:几个几是多少、几的几倍是多少。

除法:理解除法的含义(平均分、包含分、一个数是另一个数的几倍。)

能看图意列算式,并描述相应的算式的含义。

(图意不够明确时,应该用单位名称表示)

能运用“倍”来描述两个数量之间的关系。

熟知算式中各数名称“因数”和“积”;被除数”、“除数”和“商”等。

乘除法的计算熟记乘法口诀,并能够运用口诀熟练计算表内乘法和除法。

了解乘法口诀的推算方法,知道2、4、8,3、6、9之间的乘法关系。

能发现乘法表中算式的排列规律,并填写。

能够熟练进行有余数除法的.计算,同时要知道有余数除法中被除数的计算方法。

会用计算关于加减乘除的两步计算式题。(递等式不要求)

能根据乘除法之间的关系进行相应的计算。

乘除法的应用(对应意义)能够运用一步计算的乘除法算式解决生活中较为简单的问题。

求几个几是多少?

求几的几倍是多少?

求平均分的结果。

求包含分的结果。

求一个数是另一个数的几倍。

有余数的除法

(加减法应用题)

角和直角的认识

初步认识角和直角,知道角的各部分名称。

能够借助工具判断直角。

长方体和正方体的认识初步认识长方体和正方体,知道长方体和正方体的面、棱以、顶点及其数量和特征。

能够比较长方体和正方体的异同,知道正方体是特殊的长方体。

长方形和正方形的认识初步认识长方形和正方形,知道长方形和正方形的基本特征。

能够比较长方形和正方形的异同,知道正方形是特殊的长方形。

经历从立体到平面的过程,体验“立体”与“平面”的区别和联系。

总结:小学二年级数学数学知识点归纳就为大家介绍完了,小朋友们,你们记住多少知识呢?如果忘记了的话,赶快点击浏览本文复习一下吧!

二年级数学知识点总结13

1.表内除法的知识点:

(1)理解平均分的意义。会根据表内乘法,计算简单的除法。

(2)会用乘法口诀求商。

(3)根据乘除法的意义解决一些简单的乘除法应用题。

(4)被除数÷除数=商被除数÷商=除数除数×商=被除数

2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

3.除法的性质

一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)

4.除法公式

(1)被除数÷除数=商

(2)被除数÷商=除数

(3)除数×商=被除数

5.被除数

除法运算中被另一个数所除的数,如24÷8=3,其中24是被除数

6.除数:在除法算式中,除号后面的数叫做除数。

例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。

7.商:在一个除法算式里,被除数÷除数=商+余数,进而推导得出:商×除数+余数=被除数。

8.完全商

当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。

9.不完全商

如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3......1,这里的.3就是不完全商。

10.被除数和商的关系

被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。

除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。

11.2—6的乘法口诀

2×2=4

2×3=6 3×3=9

2×4=8 3×4=12 4×4=16

2×5=10 3×5=15 4×5=20 5×5=25

2×6=12 3×6=18 4×6=24 5×6=30 6×6=36

12.直角:几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。

一个直角等于90度,符号:Rt∠

13.几何中的锐角:大于0°小于90°(直角)的角。

两个锐角相加不一定大于直角,但一定小于平角。

14.钝角:钝角大于直角(90°)小于平角(180°)的角叫做钝角。

15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。

16.旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

17.旋转的性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全相等。

18.旋转的三要素

(1)旋转中心;

(2)旋转方向;

(3)旋转角度。

注意:三要素中只要任意改变一个,图形就会不一样。

旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度

19.表内除法的知识点:

(1)理解平均分的意义。会根据表内乘法,计算简单的除法。

(2)会用乘法口诀求商。

(3)根据乘除法的意义解决一些简单的乘除法应用题。

(4)被除数÷除数=商被除数÷商=除数除数×商=被除数

20.7、8、9的乘法口诀

7×7=49

7×8=56 8×8=64

7×9=63 8×9=72 9×9=81

21.万以内的数的认识

100=10个10(10个10相加的结果等于100)

1000=10个100(10个100相加的结果等于1000)

22.克

克为质量单位,符号g,相等于千分之一千克。一克的重量大约相于一立方厘米水在室温的质量,大约有一个万字夹的质量。

1吨=1,000,000克(一百万克)

1公斤(1千克)=1,000克(一千克)

1市斤=500克(1克=0.002市斤)

1毫克=0.001克(1克=1000毫克)

1微克=0.000001克(1克=1000000微克)

1纳克=0.000000001克(1克=1000000000纳克)

23.千克

千克:(符号kg或㎏)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位之一。

二年级数学知识点总结14

空间直线与直线之间的位置关系

(1)异面直线定义:不同在任何一个平面内的两条直线

(2)异面直线性质:既不平行,又不相交。

(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

(4)求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角

C、利用三角形来求角

(5)等角定理:如果一个角的'两边和另一个角的两边分别平行,那么这两角相等或互补。

(6)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点。

三种位置关系的符号表示:aαa∩α=Aaα

(7)平面与平面之间的位置关系:

平行——没有公共点;αβ

相交——有一条公共直线。α∩β=b

二年级数学知识点总结15

第一单元 数据整理与收集

1.学会用“正”字记录数据。

2.会数“正”,知道一个“正”字代表数量5。

3.根据统计表,会解决问题。

4.数据收集---整理---分析表格。

第二单元 表内除法(一)

1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

除法就是用来解决平均分问题的。

2.平均分里有两种情况:

(1)把一些东西平均分成几份,求每份是多少;用除法计算,

总数÷份数=每份数

例:24本练习本,平均分给6人,每人分多少本?

列式:24÷6=4

(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

例:24本练习本,每人4本,能分给多少人?

列式:24÷4=6

3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

例如:12÷4=3读作(12除以4等于3)

例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

5.用2~6的乘法口诀求商

1、求商的方法:

(1)用平均分的方法求商。

(2)用乘法算式求商。

(3)用乘法口诀求商。

2、用乘法口诀求商时,想除数和几相乘的被除数。

一句口诀可以写四个算式。(乘数相同的除外)。

例:用“三八二十四”这句口诀

A、24÷3=8 B、3×8=24

C、24÷3=8 D、24÷8=3

计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

6.解决问题

1、解决有关平均分问题的方法:

总数÷每份数=份数、总数÷份数=每份数、

因数×因数=积、一个因数=积÷另一个因数

2、用乘法和除法两步计算解决实际问题的方法:

(1)所求问题要求求出总数,用乘法计算;

(2)所求问题要求求出份数或每份数,用除法计算。

(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

第三单元 图形的运动

1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

成轴对称图形的汉字:

一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

(记住:平移只能上下移动或左右移动)

3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

(一)填空

1、汽车在笔直的公路上行驶,车身的运动是( )现象

2、教室门的打开和关闭,门的运动是( )现象。

A.平移 B旋转 C平移和旋转

3、下面( )的运动是平移。

A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

第四单元 表内除法(二)

这单元主要是考口算题。有以下几种形式:

1、用7、8、9的乘法口诀求商

求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

例.直接口算:28÷4 8÷8

2、解决问题

求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

第五单元 混合运算

一、混合计算

混合运算,先乘除,后加减,有括号的要先算括号里面的。

只有加、减法或只有乘、除法,都要从左到右按顺序计算。

二、解决两步计算的实际问题

1、想好先解决什么问题,再解决什么问题。

2、可以画图帮助分析。

3、可以分布计算,也可以列综合算式。

请画出先算哪一步,再算哪一步(并标上1和2)

1、同级运算的类型:

例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

2、不同级运算的类型:

例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。

例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

4.把两个算式合并成一个综合算式。(重点)。

弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

先算____________________再算____________________

例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

6.练习十三 第4题 (重点)

1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

第六单元 有余数的除法

有余数的除法

1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

最大的余数小于除数1,最小的余数是1。

3、笔算除法的计算方法:

(1)先写除号“厂”

(2)被除数写在除号里,除数写在除号的左侧。

(3)试商,商写在被除数上面,并要对着被除数的个位。

(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

(2)乘:把除数和商相乘,将得数写在被除数下面。

(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

(4)比:将余数与除数比一比,余数必须必除数小。

5、解决问题

根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

(1)余数比除数小。

例:43÷7=()…( )余数可能是( )或者余数最大是( )

(2)至少问题(进一法):商+1

例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

(3)最多问题(去尾法)

例:小丽有10元钱,买3元一个的面包,最多能买几个?

课例:

1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

22÷4=5(条)……2(人)

答:他们至少要租6条船。

第七单元 万以内数的认识

一、1000以内数的.认识

1、10个一百就是一千。

2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

二、10000以内数的认识

1、10个一千是一万。

2、万以内数的读法和写法与1000以内的数读法和写法相同。

3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

三、整百、整千数加减法

1、整百、整千加减法的计算方法。

(1)把整百、整千数看成几个百,几个千,然后相加减。

(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

2、估算

把数看做它的近似数再计算。

四、10000以内数的大小比较的方法:

(1)位数多的数就大,例如453 < 1000

(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978

(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

补充:

1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

例:2647=( )+( )+( )+( )

4、用估算策略解决问题。

96页 例13(估大)

练习19 第8题(估小)

第八单元 克、千克

1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

1斤=10两、1两=50克)

5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

估计物品有多重,要结合物品的大小、质地等因素。

相关文章: