八年级数学《勾股定理》教案(通用10篇)
为了学生更好的领悟和掌握勾股定理的性质和应用,教师应该认真做好教案准备工作,下面是小编给大家整理的八年级数学《勾股定理》教案,欢迎阅读。

八年级数学《勾股定理》教案 1
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:
勾股定理及其应用
教学难点: 通过有关勾股定理的历史讲解,对学生进行德育教育 直尺,微机 以学生为主体的讨论探索法 1、新课背景知识复习 (1)三角形的三边关系 (2)问题:(投影显示) 直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗? 2、定理的获得 让学生用文字语言将上述问题表述出来. 勾股定理:直角三角形两直角边 的平方和等于斜边 的平方 强调说明: (1)勾――最短的边、股――较长的直角边、弦――斜边 (2)学生根据上述学习,提出自己的问题(待定) 学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论. 3、定理的证明方法 方法一:将四个全等的直角三角形拼成如图1所示的正方形. 方法二:将四个全等的直角三角形拼成如图2所示的正方形, 方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形 以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明 4、定理与逆定理的应用 例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长. 解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有 ∴ ∠2=∠C 又 ∴ ∴CD的长是2.4cm 例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点, 求证: 证法一:过点A作AE⊥BC于E 则在Rt△ADE中, 又∵AB=AC,∠BAC= ∴AE=BE=CE 即 证法二:过点D作DE⊥AB于E, DF⊥AC于F 则DE∥AC,DF∥AB 又∵AB=AC,∠BAC= ∴EB=ED,FD=FC=AE 在Rt△EBD和Rt△FDC中 在Rt△AED中, ∴ 例3 设 求证: 证明:构造一个边长 的`矩形ABCD,如图 在Rt△ABE中 在Rt△BCF中 在Rt△DEF中 在△BEF中,BE+EF>BF 即 例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为 AD+AB+BC=3,AB+BC+CD=3 图3中,在Rt△DGF中 同理 ∴图3中的路线长为 图4中,延长EF交BC于H,则FH⊥BC,BH=CH 由∠FBH=  及勾股定理得: EA=ED=FB=FC= ∴EF=1-2FH=1- ∴此图中总线路的长为4EA+EF= ∵3>2.828>2.732 ∴图4的连接线路最短,即图4的架设方案最省电线. 5、课堂小结: (1)勾股定理的内容 (2)勾股定理的作用 已知直角三角形的两边求第三边 已知直角三角形的一边,求另两边的关系 6、布置作业: a、书面作业P130#1、2、3 b、上交作业P132#1、3 7、板书设计: 8、探究活动 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响 (1)该城市是否会受到这交台风的影响?请说明理由 (2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级? 1、知识与技能目标 学会观察图形,勇于探索图形间的关系,培养学生的空间观念. 2、过程与方法 (1)经历一般规律的探索过程,发展学生的抽象思维能力. (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 3、情感态度与价值观 (1)通过有趣的问题提高学习数学的兴趣. (2)在解决实际问题的过程中,体验数学学习的实用性. 探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题. 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题. 多媒体 情景: 如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近? 学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算. 学生汇总了四种方案: (1) (2) (3)(4) 学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的'路线比情形(2)要短. 学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短. 如图: (1)中A→B的路线长为:AA’+d; (2)中A→B的路线长为:AA’+A’B>AB; (3)中A→B的路线长为:AO+OB>AB; (4)中A→B的路线长为:AB. 得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB? 在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则. 教材23页 李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远? 2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离. 3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长? 内容: 1、如何利用勾股定理及逆定理解决最短路程问题? 内容: 作业:1.课本习题1.5第1,2,3题. 要求:A组(学优生):1、2、3 B组(中等生):1、2 C组(后三分之一生):1 板书设计: 教学反思: 1.灵活应用勾股定理及逆定理解决实际问题. 2.进一步加深性质定理与判定定理之间关系的认识. 1.重点:灵活应用勾股定理及逆定理解决实际问题. 2.难点:灵活应用勾股定理及逆定理解决实际问题. 3.难点的突破方法: 创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法. 四、例习题分析 例1(P83例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形; ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30; ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的`逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR—∠QPS=45°. 小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识. 例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状. 分析:⑴若判断三角形的形状,先求三角形的三边长; ⑵设未知数列方程,求出三角形的三边长5、12、13; ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 解略. 本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识. 勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。 本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。 一、 知识与技能 1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。 2、应用勾股定理解决简单的实际问题 3学会简单的合情推理与数学说理 二、 过程与方法 引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。 三、 情感与态度目标 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。 四、 重点与难点 1、探索和证明勾股定理 2熟练运用勾股定理 一、创设情景,揭示课题 1、教师展示图片并介绍第一情景 以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。 周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。” 2、教师展示图片并介绍第二情景 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。 二、师生协作,探究问题 1、现在请你也动手数一下格子,你能有什么发现吗? 2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢? 3、你能得到什么结论吗? 三、得出命题 勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。 四、勾股定理的证明 赵爽弦图的证法(图2) 第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。 第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的 角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。 因为边长为 的正方形面积等于4个直角三角形的.面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。 这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。 五、应用举例,拓展训练,巩固反馈。 勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。 例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗? 六、归纳总结 1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题 2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。 七、讨论交流 让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。 我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。 通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。 通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。 (3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。 重点:探索和验证勾股定理的过程 难点: (1)数形结合”思想方法的理解和应用 (2)通过拼图,探求验证勾股定理的.新方法 八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。 (一)导入新课 介绍勾股世界 两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。 (二)讲解新课 1、探索活动一: 观察下图,并回答问题: (1)观察图1 正方形A中含有 个小方格,即A的面积是 个单位面积; 正方形B中含有 个小方格,即B的面积是 个单位面积; 正方形C中含有 个小方格,即C的面积是 个单位面积。 (2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。 (3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗? A的面积 (单位面积) B的面积 (单位面积) C的面积 (单位面积) 图1 9 9 18 图2 4 4 8 2、探索活动二: (1)观察图3,图4 并填写下表: A的面积 (单位面积) B的面积 (单位面积) C的面积 (单位面积) 图3 16 9 25 图4 4 9 13 你是怎样得到上面结果的?与同伴交流。 (2)三个正方形A,B,C的面积之间的关系? 3、议一议(合作交流,验证发现) (1)你能发现直角三角形三边长度之间存在什么关系吗? 勾股定理:如果直角三角形两直角边分别为a、b,斜边为c ,那么a2+b2=c2。 即直角三角形两直角边的平方和等于斜边的平方。 (2)我们怎么证明这个定理呢? 教师指导第一种证明方法,学生合作探究第二种证明方法。 可得: 想一想:大正方形的面积该怎样表示? 想一想:这四个直角三角形还能怎样拼? 可得: 4、例题分析 如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高? 解:∵, ∴在中, ,根据勾股定理, ∴电线杆折断之前的高度=BC+AB=5米+13米=18米 (三)课堂小结 勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等 . (四)布置作业 收集有关勾股定理的证明方法,下节课展示、交流. 勾股定理的探索与证明 做一做 勾股定理 议一议 (直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2) 《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。 知识与技能: 1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 过程与方法: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。 重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理 学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 教学环节 教学内容 活动和意图 创设情境导入新课 以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段VCR说明原因。 [设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。 新知探究 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。 (1)同学们,请你也来观察下图中的地面,看看能发现些什么? (2)你能找出图18.1-1中正方形1、2、3面积之间的关系吗? 通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。 如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。 回答以下内容: (1)想一想,怎样利用小方格计算正方形A、B、C面积? (2)怎样求出正方形面积C? (3)观察所得的各组数据,你有什么发现? (4)将正方形A,B,C分别移开,你能发现直角三角形边长a,b,c有何数量关系? 引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积. 问题是思维的起点”,通过层层设问,引导学生发现新知。 探究交流归纳 拼图验证加深理解 如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。 回答以下内容: (1)想一想,怎样利用小方格计算正方形P、Q、R的面积? (2)怎样求出正方形面积R? (3)观察所得的各组数据,你有什么发现? (4)将正方形P,Q,R分别移开,你能发现直角三角形边长a,b,c有何数量关系? 由以上两问题可得猜想: 直角三角形两直角边的平方和等于斜边的平方。 而猜想要通过证明才能成为定理 活动探究: (1)让学生利用学具进行拼图 (2)多媒体课件展示拼图过程及证明过程理解数学的严密性。 从特殊的等腰直角三角形过渡到一般的直角三角形。 渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。 通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。 利用分组讨论,加强合作意识。 1、经历所拼图形与多媒体展示图形的联系与区别。 2、加强数学严密教育,从而更好地理解代数与图形相结合 应用新知解决问题 在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。 把生活中的实物抽象成几何图形,让学生了解丰富变幻的.图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。 回顾小结整体感知 在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。 学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。 布置作业巩固加深 必做题: 1. 完成课本习题1, 2,3题。 2. 如图,分别以直角三角形的三边为直径作三个半圆,这三个半圆之间面积有何关系?为什么? 选做题: 3. 课后收集勾股定理的证明方法,下节课展示。 针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。 (一)知识目标 1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。 2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。 (二)能力目标 1、培养学生学数学、用数学的意识和能力。 2、能把已有的数学知识运用于勾股定理的探索过程。 3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。 (三)情感目标 1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。 2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。 通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。 运用已掌握的相关数学知识探索勾股定理。 (一)创设情境,引出问题 想一想: 小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗? 要解决这个问题,必须掌握这节课的内容。这节课我们要探讨的是直角三角形的三边有什么关系。 (二) 探索交流,得出新知 探讨之前我们一起来回忆一下直角三角形的三边: 如图,在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b 问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢? (1)我们先来探讨等腰直角三角形的三边之间的关系。 这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现,A C a B 请同学们也来看一看、找一找。 如图 数学家毕达哥拉斯的发现:S A +SB =SC 即:a 2+b2=c2 也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。 议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的平方? 如图 分析: SA +SB =SC 是否成立? (1)正方形A 中含有 个小方格,即S A = 个单位面积。 (2)正方形B 中含有 个小方格,即S B = 个单位面积。 (3)由上可得:S A +SB = 个单位面积 问题:正方形C 的面积要如何求呢?与同伴进行交流。 方法一: “补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的三角形 方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。 综上: 我们得出:S A +SB =SC 即:a +b=c 2 2 2 C - 2 - a B 也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。 概括: 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方 数学语言描述: 如图,在Rt △ABC 中,a 2+b2=c2 (用多媒体简单介绍勾股定理的名称由来、中国古代的数学成就及勾股定理的`“无字证明”) (三)应用新知,解决问题 例1:求出下列直角三角形中未知边x 的长度 5 注意:要根据图表找出未知边是斜边还是直角边,勾股定理要用对。 从上面这两道例题,我们知道了在直角三角形中,任意已知两边,可以求第三边。 即勾股定理的变形公式: 如图,在Rt △ABC 中 (1)若已知a ,b 则求c 的公式为:c =(2)若已知a ,c 则求b 的公式为:b =(3)若已知b ,c 则求a 的公式为:a = a +b c -a c -b 22 22 2 C a B 2 例2: 如图,在直角三角形ABC 中, ∠C=900, A (1) 已知: a=5, b=12, 求c; (2) 已知: b=8,c=10 , 求(3) 已知: a= 3, c=2, 求 请同学们利用这节课学到的勾股定理及推论解决我们课前提出的问题: 电视屏幕: 解:在Rt △ABC 中,AB=46厘米,BC=58厘米 由勾股定理得:AC= ? D A 46AB 2 +BC 2 2 =46+58 2 ≈74(厘米) ∴不同意小明的想法。 - 3 - 58厘米 C (四)归纳总结 (1)这节课你学到了什么知识? ①勾股定理:直角三角形两直角边的平方和等于斜边的平方。 ②在直角三角形中,任意已知两边,可以用勾股定理求第三边。 (2) 运用“勾股定理”应注意什么问题? ①要利用图形找到未知边所在的直角三角形; ②看清未知边是所在直角三角形的哪一边; ③勾股定理要用对。 (五)练习巩固 (1)、如图,受台风“麦莎”影响,一棵树在离地面8米处断裂, 树的顶部落在离树跟底部6米处,这棵树折断前有多高? (2)、学校有一块长方形的花圃,经常有同学为了少走几步而走捷径,于是在草坪上开辟了一条“新路”,他们这样走少走了______步. (每两步约为1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 则BC 的长为___________。 (六)作业 1. A、B 、C 组:课本第69、70页,习题18.1 第1, 2,3题. 2. A、B :练习册33、34页 3.A :课本第71页“阅读与思考”,了解勾股定理的多种证法。 知识与技能: 了解勾股定理的一些证明方法,会简单应用勾股定理解决问题 在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。 通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。 1、创设情境 问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义? 师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。 设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。 2、探究勾股定理 观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界 问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系? 师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论 追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系? 师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。 设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论 问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的'这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。 师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。 1、知识与技能目标 用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用. 2、过程与方法 让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系. 3、情感态度与价值观 在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习.教学用具:
教学方法:
教学过程:
八年级数学《勾股定理》教案 2
教学目标
教学重点:
教学难点:
教学准备:
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
第二环节:合作探究(15分钟,学生分组合作探究)
第三环节:做一做(7分钟,学生合作探究)
第四环节:巩固练习(10分钟,学生独立完成)
第五环节 课堂小结(3分钟,师生问答)
第六 环节:布置作业(2分钟,学生分别记录)
八年级数学《勾股定理》教案 3
一、教学目标
二、重点、难点
三、课堂引入
八年级数学《勾股定理》教案 4
[教学分析]
[教学目标]
[教学过程]
八年级数学《勾股定理》教案 5
一、教学目标
二、教学的重、难点
三、学情分析
四、教学程序分析
五、板书设计
六、课后反思
八年级数学《勾股定理》教案 6
一、 教学目标设置
二 教学重、难点
三、学情分析
四、教学策略
五、教学过程
八年级数学《勾股定理》教案 7
一、教学目标
二、教学重点
三、教学难点
四、教学过程
八年级数学《勾股定理》教案 8
教学目标
过程与方法:
情感态度价值观:
教学过程
八年级数学《勾股定理》教案 9
教学目标
教学重点
:了结勾股定理的.由,并能用它解决一些简单的问题。
教学难点:勾股定理的发现
教学准备:多媒体
教学过程: 第一环节:创设情境,引入新(3分钟,学生观察、欣赏) 内容:2002年世界数学家大会在我国北京召开, 投影显示本届世界数学家大会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理” 的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题) 第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究) 1.探究活动一: 内容:(1)投影显示如下地板砖示意图,让学生初步观察: (2)引导学生从面积角度观察图形: 问:你能发现各图中三个正 方形的面 积之间有何关系吗? 学生通过观察,归纳发现: 结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 2.探究 活动二: 由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图: (2)填表: A 的面积 (单位面积)B的面积 (单位面积)C的面积 (单位面积) 左图 右图 (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.) (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出: 结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 3.议一议: 内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗? (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗? 勾股定理(gou-gu theorem): 如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方. 数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名. 第三环节: 勾股定理的简单应用(7分钟,学生合作探究) 内容: 例 如图所示,一棵大树在一次强烈台风中于离 地面10m处折断倒下, 树顶落在离树根24m处. 大树在折断之前高多少? (教师板演解题过程) 第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流) 1、列图形中未知正方形的面积或未知边的长度: 2、生活中的应用: 小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 第五环节:堂小结(3分钟,师生对答,共同总结) 内容:教师提问: 1.这一节我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结: 1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 . 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法; ③ “割、补、拼、接”法. 3.思想:① 特殊—一般—特殊; ② 数形结合思想. 第六 环节:布置作业(2分钟,学生分别记录) 内容: 作业:1.教科书习题1.1; 2.《读一读》——勾股世界; 3.观察下图,探究图中三角形的三边长是否满足 . 要求:A组(学优生):1、2、3 B组(中等生):1、2 C组(后三分之一生):1 板书设计:见电子屏幕 教学反思: 1、通过拼图,用面积的方法说明勾股定理的正确性. 2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。 或学习建议学习重点:用面积的方法说明勾股定理的正确. 学习难点:勾股定理的应用. 自学准备与知识导学: 这是1955年希腊为纪念一位数学家曾经发行的邮票。 邮票上的图案是根据一个著名的数学定理设计的。 1、探索 问题:分别以图中的直角三角形三边为边向三角形外 作正方形,小方格的面积看做1,求这三个正方形的面积? S正方形BCED=S正方形ACFG=S正方形ABHI= 发现: 2、实验 在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。 请完成下表: S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系 112 145 41620 91625 发现: 如何用直角三角形的三边长来表示这个结论? 这个结论就是我们今天要学习的勾股定理: 如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾 练习1、求下列直角三角形中未知边的`长 练习2、下列各图中所示的线段的长度或正方形的面积为多少。 (注:下列各图中的三角形均为直角三角形) 例1、如图,在四边形中,∠,∠,求. 检测: 1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________; (2)b=8,c=17,则S△ABC=________。 2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是() A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10 3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为() A.12cmB.10cmC.8cmD.6cm 4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图) 5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米? 课后反思或经验总结: 1、什么叫勾股定理; 2、什么样的三角形的三边满足勾股定理; 3、用勾股定理解决一些实际问题。八年级数学《勾股定理》教案 10
学习目标
重点难点
学习过程教师
二次备课栏
学习交流与问题研讨:
练习检测与拓展延伸:
